Purpose

Focus is on drag optimization to maximize rocket performance!
Agenda

- Definitions
- Mission Parameters
- Nose Cone Design
- Fin Design
- Summary
- Appendices
- References & Web Sites
Definitions

- **Drag Coefficient**
 - **Parasitic Drag**
 - **Form/Pressure/Profile Drag**
 - Dependence upon the profile of the object
 - **Base Drag**
 - Due to Boundary Layer separation at base of airframe/fins
 - **Skin Friction (Viscous) Drag**
 - Friction of the fluid against the skin of the object
 - **Interference Drag**
 - Incremental drag above sum of all other drag components. Created at protrusion intersections.
 - **Induced (Lift-Induced) Drag**
 - Due to redirection of airflow
 - **Wave (Compressibility) Drag**
 - Due to shockwaves when moving near or above the speed of sound (typically leading & trailing edges)
 - **Rotational Drag**
 - Circumferential velocity from roll will thicken boundary layer and result in increased drag
Definitions

- **Wetted Area**
 - Surface Area exposed to airflow

- **Fineness (Aspect) Ratio**
 - Nose Cone Length/Base Diameter

- **Bluffness Ratio**
 - Tip Diameter/Base Diameter
 - Hemispherical Blunting
 - Me’plat Diameter is a Flat Truncation (e.g., bullets and artillery shells)
Definitions¹

- **Laminar Boundary Layer**
 - Fluid streams move in parallel (negligible transfer of momentum)

- **Turbulent Boundary Layer**
 - Fluid streams transverse with velocity variations around an average value

- **Boundary Layer Separation**
 - Boundary layer separates from object’s surface creating an effective profile

- **Reynolds Number**
 - Dimensionless ratio of inertial / viscous forces
 - http://www.grc.nasa.gov/WWW/BGH/reynolds.html
Definitions

• Aspect Ratio (AR)
 • Fin Span / Average Fin Cord

• Effective Aspect Ratio
 • Working AR due to Airflow Effects

• Taper Ratio
 • Tip Cord / Root Cord
Definitions

• **Thrust Profile**
 • Thrust vs. Time Curve

• **Velocity Definitions**
 • Subsonic: < .8 Mach
 • Transonic: .8 to 1.2 Mach
 • Supersonic: 1.2 to 5 Mach
 • Hypersonic: > 5 Mach
Mission Parameters

- **Velocity**
 - Coefficient of Drag
 - Thrust Profile
 - Total Mass
- **Altitude**
 - Coefficient of Drag
 - Thrust Profile
 - Total and Coasting Mass
- **Mass**
 - Material Volume and Strength
 - Payload
- **Payload**
 - Available Volume
 - Stability Impacts
- **Stability (CP&CG - Discussed Last Year)**
Nose Cone Design

- **Mission Dependent Variables**
 - Payload
 - Stability (CP, CG)
- **Independent Variables**
 - Atmospheric Density
 - Temperature
 - Wind Conditions
 - Surface Finish
 - Angle of Attack
Nose Cone Design

• Assumptions
 • Zero Angle of Attack
 • Constant Surface Finish
 • No Roll
 • No Aerodynamic Heating Effects
Nose Cone Solutions

Best in Class

<table>
<thead>
<tr>
<th>Category</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsonic</td>
<td>Elliptical</td>
<td>LD-Haack (Von Karman)</td>
<td>LV-Haack (< Mach 1)</td>
</tr>
<tr>
<td>Transonic</td>
<td>X(^{1/2}) Power Series</td>
<td>X(^{1/2}) Power Series</td>
<td>X(^{1/2}) Power Series</td>
</tr>
<tr>
<td>Supersonic</td>
<td>Eggers Minimum Drag</td>
<td>X(^{3/4}) Power Series</td>
<td>X(^{3/4}) Power Series</td>
</tr>
<tr>
<td>Hypersonic</td>
<td>Love Minimum Drag</td>
<td>X(^{6}) Power Series</td>
<td>X(^{6}) Power Series</td>
</tr>
</tbody>
</table>

Copyright © 2011 by Off We Go Rocketry
Fineness Ratio6,7

- Increasing Fineness Ratio
 - Decreases Wave Drag
 - Increases Skin Friction Drag
 - Optimum Ratio is approximately 5
Bluntness Ratio\(2,3,5\)

- **Optimal ratio is** .15
 - Provided length remains constant
- **Applicability dependent upon fineness ratio and velocity**
 - Fineness ratio \(\leq 5\)
 - Below Hypersonic
Coefficient of Drag (C_D) Subsonic1

- Primarily Skin Friction Drag
- Minimal Pressure Drag
- No Wave Drag
- No Interference Drag
- No Induced Drag
- Elliptical
 - Fineness Ratio of 2
Coefficients of Drag (C_D) — Transonic

Wave Drag Increases Substantially
Pressure Drag becomes Significant
Fineness Ratio of 5 is Critical

Comparison of drag characteristics of various nose shapes in the transonic-to-low Mach regions. Rankings are: superior (1), good (2), fair (3), inferior (4).

Copyright © 2011 by Off We Go Rocketry
Coefficient of Drag (C_D) Supersonic

- Pressure Drag Decreases
- Wave Drag Decreases
- Fineness Ratio of 5 is Critical
Coefficient of Drag \((C_D) \) Hypersonic\(^{8,9,10}\)

- \(x^{0.6} \) Power Series
 - Fineness Ratio of 5 or 6
- Varies with Fineness Ratio
- No Blunting

Copyright © 2011 by Off We Go Rocketry
Fin Design

- Mission Dependence
 - Stability (CP, CG, Roll, ...)
- Independent Variables
 - Atmospheric Density
 - Temperature
 - Wind Conditions
 - Surface Finish (Assumed Constant)
 - Angle of Attack (Assumed Zero)
Fin Optimization

- Minimize Drag
- Maintain Structural Integrity
 - Minimize Divergence
 - Minimize Bending-Torsion Flutter
 - Minimize Mass
- Maximize Fin Joint Strength
- Maintain Passive Stability
Fin Drag Optimization

• No General Solution Unearthed
 • Computational Models Exist at Subsonic, Transonic, and Supersonic Speeds

• Solution Factors
 • Velocity
 • Density
 • Lift Requirements (Corrective Moment) at Angles of Attack
 • ...

• Structural Strength
Fin Count

- Fin Count > 3
 - Skin Friction
 Drag Increases
 - Interference
 Drag Increases up to Mach 1.35

Fin Count → 3 but not always ...
Fin Tip Vortices

- Vortices alter Fin Effective Aspect Ratio
- Positive or Neutral Ratio Desired
 - Lower Angles of Attack for Given Lift (Increases Corrective and Damping Moments)
 - Lower Induced Drag for Given Lift
- Desire Zero or Positive Effective Aspect Ratio
- Ease of Manufacture
 - Implies Fins with a Tip Cord > 0
 - Square Edge Tips
Fin Flutter²⁰

• NASA Safety Factors
 • 15% between vehicle & flutter velocity
 • 32% between vehicle and flutter dynamic pressure
Fin Flutter

- Stall Flutter not applicable
- Choose Shear Modulus for Material
- Apply Contingency when selecting Flutter criterion
- Criterion then used with Aspect Ratio to find Thickness Ratio
- Multiple Thickness Ratio & Cord to get Thickness
Fin Joint Drag1,12

- **Interference Drag**
 - Minimized when fillet radius is between 4% and 8% of fin root cord
 - 10” Root Cord \rightarrow $\frac{1}{2}$” Radius
 - Consider Structural Strength

- **Wing (Leading Edge) Fillets**
 Increase Drag in the Transonic Region
Sweep Angle

- **70° Sweep Angle Superior to Smaller Angles in Sub, Trans, & Supersonic Ranges**
- **4 Fin Configuration Exception in Subsonic Region**
Fin Thickness15,17,18

- Thinner Symmetrical Fins Result in Lower C_D in Sub, Trans, and Supersonic Regions
Leading Edge14

(b) Delta wings.

(b) Trapezoidal wings.

(b) Drag coefficients and lift-drag ratios.
Leading Edge \(^{14}\)

- **At Mach 4**
 - Sharp Leading Edge has Lower \(C_D\) at all Angles of Attack
 - Trapezoidal (Clipped Delta) has Lower \(C_D\) than Delta
Trailing Edge

- Trailing-edge Thickness up to 0.7% Root Cord Reduces Transonic Drag
 - Does not Impact Subsonic Drag
- Trailing Edge Thickness > 0.7% Results in Increased Drag
- Varies with Airfoil Thickness and Optimum is < 0.7%
 - 10” Root Cord → $\frac{1}{16}$” Thick Trailing Edge
Fin Cross Section13,19

- Sub, Trans, and Supersonic
 - Hexagonal Lower C_D than Double Wedge
- Supersonic
 - C_D NACA 65A003 < 65A004 < Hexagonal
Shape14,19

- **Supersonic Data**
 - Trapezoidal (Clipped Delta) Lower C_D than Delta
 - Delta and Diamond have Similar C_D
Multi-Disciplinary Design Optimization (MDO)x

- Optimizing Individual Components may not Result in an Optimum Design
 - Increasing Fin count from 3 to 4
 - Improving Nose Cone Fineness Ratio (3.5 vs. 7) may Result in Increased Fin Drag at Some Velocities
Summary

- **Optimal Nose Cones**
 - Subsonic – Elliptical
 - Transonic – Von Karman (Blunted 15% of Base Diameter)
 - Supersonic - $X^{3/4}$ Power Series
 - Hypersonic – X^6 Power Series
 - Fineness Ratio of 5

- **Fin Optimization**
 - Fin Count of 3
 - Fin Joints 4% to 8% of Root Cord
 - Thickness < 10% of Root Cord often between 3% & 6%
 - Trailing Edge Flat but < 0.7% of Root Cord in Thickness
 - Leading Edge may be Sharp
 - Sweep Angle between 45° and 70°
 - Flat Fin Tips
 - Hexagonal Cross Section
 - Clipped Delta Shape
Appendices

Nose Cones
Nose Cone Geometries

• Conical
• Elliptical
• Ogive (Tangent)
• Parabolic
• Power Series
• Sears-Haack (Von Karman)
Nose Cone Parameters

- \(L \) is the overall length of the nosecone
- \(R \) is the radius of the base of the nosecone
- \(y \) is the radius at any point \(x \), as \(x \) varies from 0 at the tip of the nosecone to \(L \)
- The full body of revolution of the nosecone is formed by rotating the profile around the centerline \((C_L) \)

Dimensions used in the equations

- \(x = 0 \)
- \(y = 0 \)
- \(x = L \)
- \(y = R \)
Conical Nose Cones

- The sides of a cone are straight lines, so the diameter equation is simply, \(y = \frac{Rx}{L} \)
- Cones are sometimes defined by their ‘half angle’, \(\phi = \tan^{-1}\left(\frac{R}{L}\right) \) and \(y = x \tan \phi \)
- \(C_p = \frac{L}{3} \)
- \(V = \pi R^2 L / 3 \)
- \(S = \pi R (R^2 + L^2)^{\cdot5} \)
Elliptical Nose Cones

• The profile of this shape is one-half of an ellipse, with the major axis being the centerline and the minor axis being the base of the nosecone.
• This shape is advantageous for subsonic flight due to its blunt nose and tangent base.
• It is defined by: \(y = R(1-x^2/L^2)^{1/2} \)
• \(C_p = \frac{3L}{2} \)
• \(V = 2\pi R^2 L/3 \)
• \(S = \pi L^2 + \left[\pi R^2 / \sigma \ln \left(\frac{1+\sigma}{1-\sigma} \right) \right] / 2 \) where \(\sigma = \frac{L^2 + R^2}{L} \)
Tangent Ogive Nose Cones

- This shape is formed by a circle segment where the base is on the circle radius and the airframe is tangent to the curve of the nosecone at its base.
- The radius of the circle that forms the ogive is: $\rho = \frac{(R^2 + L^2)}{2R}$
- The radius y at any point x, as x varies from 0 to L is: $y = (\rho^2 - (x - L)^2)^{1/2} + R - \rho$ where $L \leq \rho$
- $C_p = \frac{V}{\pi R^2}$
- $V = \pi [L\sigma^2 - L^3/\sigma - (\sigma^3 - R\sigma^3)\sin^{-1}(L/\sigma)]$ where $\sigma = \frac{(R^2 + L^2)}{2R}$
- $S = ?$
The Parabolic Series nose shape is generated by rotating a segment of a parabola around a line parallel to its axis of symmetry.

$$y = R\{(2[\pi/L] - K[\pi/L]^2)/(2-K)\} \text{ for } 0 \leq K \leq 1$$

- \(K = 0\) for a CONE
- \(K = 0.5\) for a 1/2 PARABOLA
- \(K = 0.75\) for a 3/4 PARABOLA
- \(K = 1\) for a PARABOLA (base tangent to airframe)

- \(C_p = \frac{L}{2}\)
- \(V = \pi R^2 L/2\)
- \(S = R^2/4L\)
Power Series Nose Cones

• The Power Series shape is characterized by its (usually) blunt tip, and by the fact that its base is not tangent to the body tube.
• The Power series nose shape is generated by rotating a parabola about its major axis. The base of the nosecone is parallel to the latus rectum of the parabola, and the factor n controls the ‘bluntness’ of the shape. As n decreases towards zero, the Power Series nose shape becomes increasingly blunt; at values of n above about .7, the tip becomes sharp.
• \(y = R\left(\frac{x}{L}\right)^n \) for \(0 \leq n \leq 1 \)
 - \(n = 1 \) for a CONE
 - \(n = .75 \) for a \(\frac{3}{4} \) POWER
 - \(n = .5 \) for a \(\frac{1}{2} \) POWER (PARABOLA)
 - \(n = 0 \) for a CYLINDER
• \(C_p = ? \)
• \(V = ? \)
• \(S = ? \)
Sears-Haack Nose Cones

- Not constructed from geometric figures
- Mathematically derived for drag minimization
- Not tangent to body at base
- Rounded not sharp nose tips
- \[y = R\{\theta-[\sin(2\theta)/2]+C\sin^3(\theta)\}^{1/2}/(\pi)^{1/2} \] where 0≤C and \(\theta = \cos^{-1}(1-2x/L) \)
 - C = 0 minimum drag for given Length and Volume (LV)
 - C = 1/3 minimum drag for given Length and Diameter (LD - Von Karman)
- \(C_p = L^{1/2} \) Von Karman; \(C_p = .437L \) LV-Haack
- V=?
- S=?
Nose Cone References

1. Topics in Advanced Model Rocketry; Mandell, Gordon K.; Caporaso, George J.; Bengen, William P.; The MIT Press; 1973

5. The Effect of Bluntness on the Drag of Spherical-Tipped Truncated Cones of Fineness Ratio 3 at Mach Numbers 1.2 to 7.4; Sommer, Simon C.; Stark, James A.; NACA Research Memorandum A52B13; 1954.

6. Pressure Drag of Bodies at Mach Numbers up to 2.0; Nelson, Robert L.; Stoney, Jr., William, G.; NACA Research Memorandum L53I22c; 1953.

Fin References

11. Effect of Number of Fins on the Drag of a Pointed Body of Revolution at Low Supersonic Velocities; Mastrocola, N; NACA Research Memorandum L7A08; 1947.
12. Transonic Drag Characteristics of a Wing-Body Combination Showing the Effect of a Large Wing Fillet; Cheatham, Donald C.; Kurbjun, Max C.; NACA Research Memorandum L8F08; 1948.
13. Damping in Roll of Models with 45°, 60°, and 70° Delta Wings Determined at High Subsonic, Transonic, and Supersonic Speeds with Rocket-Powered Models; Saunders Jr, E Claude; NACA Research Memorandum L52D22a; 1952.
15. Results of a Flight Investigation to Determine the Zero-Lift Drag Characteristics of a 60° Delta Wing with NACA 65-006 Airfoil Section and Various Double-Wedge Sections at Mach Numbers from 0.7 to 1.6; Welsh, Clement J.; NACA Technical Note 3650; 1956.
20. Aeroelastic Optimization of Sounding Rocket Fins; Simmons III, Joseph R.; Air Force Institute of Technology; 2009.
MDO References

1. Results of Flight Tests at Supersonic Speeds to Determine the Effect of Body Nose Fineness Ratio on Body and Wing Drag; Katz, Ellis R; NACA Research Memorandum L7B19; 1947.
Selected Websites

- http://exploration.grc.nasa.gov/education/rocket/guided.htm
- http://ntrs.nasa.gov/search.jsp
- http://www.apogeeerockets.com/Peak-of-Flight_index.asp
- http://www.rocketmaterials.org/
- http://www.aerorocket.com/